Točno
6. rujna 2017. 10:41 (2 mjeseci, 2 tjedna)
Let ABC be a triangle, and M the midpoint of its side BC. Let \gamma be the incircle of triangle ABC. The median AM of triangle ABC intersects the incircle \gamma at two points K and L. Let the lines passing through K and L, parallel to BC, intersect the incircle \gamma again in two points X and Y. Let the lines AX and AY intersect BC again at the points P and Q. Prove that BP = CQ.
Upozorenje: Ovaj zadatak još niste riješili!
Kliknite ovdje kako biste prikazali rješenje.

Ocjene: (1)