IMO Shortlist 1983 problem 6


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Suppose that {x_1, x_2, \dots , x_n} are positive integers for which x_1 + x_2 + \cdots+ x_n = 2(n + 1). Show that there exists an integer r with 0 \leq r \leq n - 1 for which the following n - 1 inequalities hold:
x_{r+1} + \cdots + x_{r+i} \leq 2i+ 1, \qquad \qquad  \forall i, 1 \leq i \leq n - r;
x_{r+1} + \cdots + xn + x_1 + \cdots+ x_i \leq 2(n - r + i) + 1, \qquad \qquad \forall i, 1 \leq i \leq r - 1.
Prove that if all the inequalities are strict, then r is unique and that otherwise there are exactly two such r.
Izvor: Međunarodna matematička olimpijada, shortlist 1983