IMO Shortlist 1997 problem 14


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
2. travnja 2012.
LaTeX PDF
Let b, m, n be positive integers such that b > 1 and m \neq n. Prove that if b^m - 1 and b^n - 1 have the same prime divisors, then b + 1 is a power of 2.
Izvor: Međunarodna matematička olimpijada, shortlist 1997