IMO Shortlist 2011 problem N3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 7,0
Dodao/la: arhiva
23. lipnja 2013.
LaTeX PDF
Let n \geq 1 be an odd integer. Determine all functions f from the set of integers to itself, such that for all integers x and y the difference f(x)-f(y) divides x^n-y^n.

Proposed by Mihai Baluna, Romania
Izvor: Međunarodna matematička olimpijada, shortlist 2011