MEMO 2011 pojedinačno problem 4
Dodao/la:
arhivaApril 28, 2012 Let
and
, with
, be positive integers such that the number
is divisible by
. Prove that
.
%V0
Let $k$ and $m$, with $k > m$, be positive integers such that the number $km(k^2 - m^2)$ is divisible by $k^3 - m^3$. Prove that $(k - m)^3 > 3km$.
Source: Srednjoeuropska matematička olimpijada 2011, pojedinačno natjecanje, problem 4