MEMO 2017 ekipno problem 2


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 6.0

Determine the smallest possible real constant C such that the inequality |x^3 + y^3 + z^3 + 1| \leqslant C|x^5 + y^5 + z^5 + 1|holds for all real numbers x, y, z satisfying x + y + z = -1.

Source: Srednjoeuropska matematička olimpijada 2017, ekipno natjecanje, problem 2