Initially, only the integer
is written on a board. An integer a on the board can be re- placed with four pairwise different integers
such that the arithmetic mean
of the four new integers is equal to the number
. In a step we simultaneously replace all the integers on the board in the above way. After
steps we end up with
integers
on the board. Prove that
is written on a board. An integer a on the board can be re- placed with four pairwise different integers
such that the arithmetic mean
of the four new integers is equal to the number
. In a step we simultaneously replace all the integers on the board in the above way. After
steps we end up with
integers
on the board. Prove that
Školjka