IMO Shortlist 2010 problem G5


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 8.0
Dodao/la: arhiva
June 23, 2013
LaTeX PDF
Let ABCDE be a convex pentagon such that BC \parallel AE, AB = BC +  AE, and \angle ABC = \angle CDE. Let M be the midpoint of CE, and let O be the circumcenter of triangle BCD. Given that \angle DMO = 90^{\circ}, prove that 2 \angle BDA = \angle CDE.

Proposed by Nazar Serdyuk, Ukraine
Source: Međunarodna matematička olimpijada, shortlist 2010