IMO Shortlist 2017 problem A3


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 7.0
Dodao/la: arhiva
Oct. 3, 2019
LaTeX PDF

Let S be a finite set, and let \mathcal{A} be the set of all functions from S to S. Let f be an element of \mathcal{A}, and let T=f(S) be the image of S under f. Suppose that f\circ g\circ f\ne g\circ f\circ g for every g in \mathcal{A} with g\ne f. Show that f(T)=T.

Source: https://www.imo-official.org/problems/IMO2017SL.pdf