IMO Shortlist 1973 problem 7


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Given a tetrahedron ABCD, let x = AB \cdot CD, y = AC \cdot BD, and z = AD \cdot  BC. Prove that there exists a triangle with edges x, y, z.
Source: Međunarodna matematička olimpijada, shortlist 1973