IMO Shortlist 2009 problem G7


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 9.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let ABC be a triangle with incenter I and let X, Y and Z be the incenters of the triangles BIC, CIA and AIB, respectively. Let the triangle XYZ be equilateral. Prove that ABC is equilateral too.

Proposed by Mirsaleh Bahavarnia, Iran
Source: Međunarodna matematička olimpijada, shortlist 2009