IMO Shortlist 2012 problem A6


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 8.0
Dodao/la: arhiva
Nov. 3, 2013
LaTeX PDF
Let f: \mathbb{N} \rightarrow \mathbb{N} be a function, and let f^m be f applied m times. Suppose that for every n \in \mathbb{N} there exists a k \in \mathbb{N} such that f^{2k}(n)=n+k, and let k_n be the smallest such k. Prove that the sequence k_1,k_2,\ldots is unbounded.
Source: Međunarodna matematička olimpijada, shortlist 2012