IMO Shortlist 2012 problem G6


Kvaliteta:
  Avg: 4.7
Težina:
  Avg: 8.0
Let ABC be a triangle with circumcenter O and incenter I. The points D,E and F on the sides BC,CA and AB respectively are such that BD+BF=CA and CD+CE=AB. The circumcircles of the triangles BFD and CDE intersect at P \neq D. Prove that OP=OI.
Source: Međunarodna matematička olimpijada, shortlist 2012