IMO Shortlist 2012 problem N8
Dodao/la:
arhiva3. studenoga 2013. Prove that for every prime

and every integer

, there exist two integers

and

such that

divides

.
%V0
Prove that for every prime $p>100$ and every integer $r$, there exist two integers $a$ and $b$ such that $p$ divides $a^2+b^5-r$.
Izvor: Međunarodna matematička olimpijada, shortlist 2012