IMO Shortlist 1974 problem 6


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Prove that for any n natural, the number \sum \limits_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k}
cannot be divided by 5.
Source: Međunarodna matematička olimpijada, shortlist 1974