IMO Shortlist 1976 problem 4


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
A sequence (u_{n}) is defined by u_{0}=2 \quad u_{1}=\frac{5}{2}, u_{n+1}=u_{n}(u_{n-1}^{2}-2)-u_{1} \quad \textnormal{for  } n=1,\ldots Prove that for any positive integer n we have [u_{n}]=2^{\frac{(2^{n}-(-1)^{n})}{3}}(where {{ Nevaljan tag "x" }} denotes the smallest integer \leq x).
Source: Međunarodna matematička olimpijada, shortlist 1976