IMO Shortlist 1976 problem 9


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let P_{1}(x)=x^{2}-2 and P_{j}(x)=P_{1}(P_{j-1}(x)) for j=2,\ldots Prove that for any positive integer n the roots of the equation P_{n}(x)=x are all real and distinct.
Source: Međunarodna matematička olimpijada, shortlist 1976