IMO Shortlist 1992 problem 6


Kvaliteta:
  Avg: 3.0
Težina:
  Avg: 6.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let \,{\mathbb{R}}\, denote the set of all real numbers. Find all functions \,f: {\mathbb{R}}\rightarrow {\mathbb{R}}\, such that f\left( x^{2}+f(y)\right) =y+\left( f(x)\right) ^{2}\hspace{0.2in}\text{for all}\,x,y\in \mathbb{R}.
Source: Međunarodna matematička olimpijada, shortlist 1992