IMO Shortlist 1996 problem G5


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 8.0
Let ABCDEF be a convex hexagon such that AB is parallel to DE, BC is parallel to EF, and CD is parallel to FA. Let R_{A},R_{C},R_{E} denote the circumradii of triangles FAB,BCD,DEF, respectively, and let P denote the perimeter of the hexagon. Prove that
R_{A} + R_{C} + R_{E}\geq \frac {P}{2}.
Source: Međunarodna matematička olimpijada, shortlist 1996