IMO Shortlist 2001 problem G2


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 6.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Consider an acute-angled triangle ABC. Let P be the foot of the altitude of triangle ABC issuing from the vertex A, and let O be the circumcenter of triangle ABC. Assume that \angle C \geq \angle B+30^{\circ}. Prove that \angle A+\angle COP < 90^{\circ}.
Source: Međunarodna matematička olimpijada, shortlist 2001