IMO Shortlist 2011 problem A6


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 8.0
Dodao/la: arhiva
June 23, 2013
LaTeX PDF
Let f : \mathbb R \to \mathbb R be a real-valued function defined on the set of real numbers that satisfies
f(x + y) \leq yf(x) + f(f(x))
for all real numbers x and y. Prove that f(x) = 0 for all x \leq 0.

Proposed by Igor Voronovich, Belarus
Source: Međunarodna matematička olimpijada, shortlist 2011