IMO Shortlist 2012 problem N5


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 7.5
Dodao/la: arhiva
Nov. 3, 2013
LaTeX PDF
For a nonnegative integer n define \text{rad}(n)=1 if n=0 or n=1, and \text{rad}(n)=p_1p_2\cdots p_k where p_1<p_2<\cdots <p_k are all prime factors of n. Find all polynomials f(x) with nonnegative integer coefficients such that \text{rad}(f(n)) divides \text{rad}(f(n^{\text{rad}(n)})) for every nonnegative integer n.
Source: Međunarodna matematička olimpijada, shortlist 2012