IMO Shortlist 1974 problem 3


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let P(x) be a polynomial with integer coefficients. We denote \deg(P) its degree which is \geq 1. Let n(P) be the number of all the integers k for which we have (P(k))^{2}=1. Prove that n(P)- \deg(P) \leq 2.
Source: Međunarodna matematička olimpijada, shortlist 1974