IMO Shortlist 1976 problem 5


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
We consider the following system with q=2p: \begin{align*}
a_{11}x_{1}+\ldots&+a_{1q}x_{q}=0,\\
a_{21}x_{1}+\ldots&+a_{2q}x_{q}=0,\\
&\vdots \\
a_{p1}x_{1}+\ldots&+a_{pq}x_{q}=0,\\
\end{align*} in which every coefficient is an element from the set \{-1,\,0,\,1\} . Prove that there exists a solution x_{1}, \ldots, x_{q} for the system with the properties:

a.) all x_{j}, j=1,\ldots,q are integers;
b.) there exists at least one j for which x_{j} \neq 0;
c.) |x_{j}| \leq q for any j=1, \ldots ,q.
Source: Međunarodna matematička olimpijada, shortlist 1976