IMO Shortlist 1978 problem 3


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 5.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let m and n be positive integers such that 1 \le m < n. In their decimal representations, the last three digits of 1978^m are equal, respectively, so the last three digits of 1978^n. Find m and n such that m + n has its least value.
Source: Međunarodna matematička olimpijada, shortlist 1978