IMO Shortlist 1978 problem 13


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
We consider a fixed point P in the interior of a fixed sphere. We construct three segments PA, PB,PC, perpendicular two by two, with the vertexes A, B, C on the sphere. We consider the vertex Q which is opposite to P in the parallelepiped (with right angles) with PA, PB, PC as edges. Find the locus of the point Q when A, B, C take all the positions compatible with our problem.
Source: Međunarodna matematička olimpijada, shortlist 1978