IMO Shortlist 1979 problem 15


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Determine all real numbers a for which there exists positive reals x_{1}, \ldots, x_{5} which satisfy the relations \displaystyle \sum_{k=1}^{5} kx_{k}=a, \displaystyle \sum_{k=1}^{5} k^{3}x_{k}=a^{2}, \displaystyle \sum_{k=1}^{5} k^{5}x_{k}=a^{3}.
Source: Međunarodna matematička olimpijada, shortlist 1979