IMO Shortlist 1985 problem 3


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
For any polynomial P(x)=a_0+a_1x+\ldots+a_kx^k with integer coefficients, the number of odd coefficients is denoted by o(P). For i-0,1,2,\ldots let Q_i(x)=(1+x)^i. Prove that if i_1,i_2,\ldots,i_n are integers satisfying 0\le i_1<i_2<\ldots<i_n, then: o(Q_{i_1}+Q_{i_2}+\ldots+Q_{i_n})\ge o(Q_{i_1}).
Source: Međunarodna matematička olimpijada, shortlist 1985