IMO Shortlist 1999 problem G6


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 8.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Two circles \Omega_{1} and \Omega_{2} touch internally the circle \Omega in M and N and the center of \Omega_{2} is on \Omega_{1}. The common chord of the circles \Omega_{1} and \Omega_{2} intersects \Omega in A and B. MA and MB intersects \Omega_{1} in C and D. Prove that \Omega_{2} is tangent to CD.
Source: Međunarodna matematička olimpijada, shortlist 1999