IMO Shortlist 2001 problem C2


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 6.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let n be an odd integer greater than 1 and let c_1, c_2, \ldots, c_n be integers. For each permutation a = (a_1, a_2, \ldots, a_n) of \{1,2,\ldots,n\}, define S(a) = \sum_{i=1}^n c_i a_i. Prove that there exist permutations a \neq b of \{1,2,\ldots,n\} such that n! is a divisor of S(a)-S(b).
Source: Međunarodna matematička olimpijada, shortlist 2001