IMO Shortlist 2004 problem G4


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 7.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
In a convex quadrilateral ABCD, the diagonal BD bisects neither the angle ABC nor the angle CDA. The point P lies inside ABCD and satisfies \angle PBC=\angle DBA \quad \text{and} \quad \angle PDC = \angle BDA.
Prove that ABCD is a cyclic quadrilateral if and only if AP=CP.
Source: Međunarodna matematička olimpijada, shortlist 2004